JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rough surface topography enhances the activation of Wnt/β-catenin signaling in mesenchymal cells.

It is known that the roughness of titanium surfaces affects cell proliferation and differentiation. However, the mechanisms mediating the cellular responses to surface topography are only partially understood. The present study investigated whether Wnt canonical signaling, an important pathway in determining cell fate, is modulated by surface roughness. This study analyzed the behavior of the murine C2C12 mesenchymal cell line on polished or acid-etched, sand-blasted (SLA) commercially pure titanium. When we transfected cells with Wnt3a or wild-type β-catenin and a reporter construct, we found that stimulation of Wnt canonical signaling was enhanced in cells on SLA surfaces. Moreover, more β-catenin translocated to the nucleus in cells on SLA surfaces after stimulation with Wnt3a as evidenced by immunofluorescence. However, when cells were transfected with constitutively active S33Y β-catenin mutant, no difference was observed between the groups. Higher levels of transcripts of Wnt target genes were detected in C2C12 cells cultured on SLA surfaces following transfection with Wnt3a, but the expression of a gene regulating β-catenin degradation, Axin 2, was reduced on SLA surfaces. Inhibition of β-catenin mediated transcription by dnTCF in murine osteoblastic MC3T3 cells, reversed the effects of topography on cell differentiation. Taken together, these results show that surface roughness modulates the responsiveness of mesenchymal cells to Wnt3a, that this requires the control of β-catenin degradation, and that the control of β-catenin signaling by surface topography is accountable for at least part of the effects of surface on cell differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app