JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hyperaldosteronism in Klotho-deficient mice.

Klotho is a membrane protein participating in the inhibitory effect of FGF23 on the formation of 1,25-dihydroxyvitamin-D(3) [1,25(OH)(2)D(3)]. It participates in the regulation of renal tubular phosphate reabsorption and stimulates renal tubular Ca(2+) reabsorption. Klotho hypomorphic mice (klotho(hm)) suffer from severe growth deficit, rapid aging, and early death, events largely reversed by a vitamin D-deficient diet. The present study explored the role of Klotho deficiency in mineral and electrolyte metabolism. To this end, klotho(hm) mice and wild-type mice (klotho(+/+)) were subjected to a normal (D(+)) or vitamin D-deficient (D(-)) diet or to a vitamin D-deficient diet for 4 wk and then to a normal diet (D(-/+)). At the age of 8 wk, body weight was significantly lower in klotho(hm)D(+) mice than in klotho(+/+)D(+) mice, klotho(hm)D(-) mice, and klotho(hm)D(-/+) mice. Plasma concentrations of 1,25(OH)(2)D(3,) adrenocorticotropic hormone (ACTH), antidiuretic hormone (ADH), and aldosterone were significantly higher in klotho(hm)D(+) mice than in klotho(+/+)D(+) mice. Plasma volume was significantly smaller in klotho(hm)D(-/+) mice, and plasma urea, Ca(2+), phosphate and Na(+), but not K(+) concentrations were significantly higher in klotho(hm)D(+) mice than in klotho(+/+)D(+) mice. The differences were partially abrogated by a vitamin D-deficient diet. Moreover, the hyperaldosteronism was partially reversed by Ca(2+)-deficient diet. Ussing chamber experiments revealed a marked increase in amiloride-sensitive current across the colonic epithelium, pointing to enhanced epithelial sodium channel (ENaC) activity. A salt-deficient diet tended to decrease and a salt-rich diet significantly increased the life span of klotho(hm)D(+) mice. In conclusion, the present observation disclose that the excessive formation of 1,25(OH)(2)D(3) in Klotho-deficient mice results in extracellular volume depletion, which significantly contributes to the shortening of life span.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app