JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Statins attenuate high mobility group box-1 protein induced vascular endothelial activation : a key role for TLR4/NF-κB signaling pathway.

High mobility group box-1 (HMGB1) has recently been implicated as a proinflammatory cytokine that plays critical roles in endothelial dysfunction and atherosclerosis. Atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, exerts anti-inflammatory effects in the cardiovascular system beyond its cholesterol-lowering property. The aim of our study was to investigate whether atorvastatin inhibits HMGB1-induced vascular endothelial activation, and elucidate the underlying molecular mechanism. In this study, we found that atorvastatin, at concentrations ranging from 0.1 to 10 μM, effectively and in a dose-dependent manner inhibited HMGB1-induced endothelial cells (ECs) activation. Incubation of ECs with 10 μM atorvastatin reduced adhesion molecules (ICAM-1 and E-selectin) expression concomitant with a significant inhibition in HMGB1-stimulated leukocyte-endothelial adhesion. Further experiments showed that atorvastatin markedly suppressed HMGB1-induced Toll like receptor 4 (TLR4) expression, Nuclear factor kappaB (NF-κB) nuclear translocation and DNA binding activity in ECs. Similar effects were also observed in ECs pretreated with the TLR4- specific inhibitor CLI-095, suggesting an important role of TLR4/NF-κB pathway. These findings indicate that atorvastatin attenuates HMGB1-induced vascular endothelial activation. The underlying mechanism involves, at least in part, inhibition of TLR4/NF-κB-dependent signaling pathway, which provied the new evidence for therapeutic application of statins to target inflammatory processes in cardiovascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app