A novel hands-free carotid ultrasound detects low-flow cardiac output in a swine model of pulseless electrical activity arrest

Todd M Larabee, Charles M Little, Balasundar I Raju, Eric Cohen-Solal, Ramon Erkamp, Scott Wuthrich, John Petruzzello, Michael Nakagawa, Shervin Ayati
American Journal of Emergency Medicine 2011, 29 (9): 1141-6

OBJECTIVE: To determine if a hands-free, noninvasive Doppler ultrasound device can reliably detect low-flow cardiac output by measuring carotid artery blood flow velocities. We compared the ability of observers to detect carotid artery flow velocity differences between pseudo-pulseless electrical activity (PEA) and true-PEA cardiac arrest.

METHODS: Five swine were instrumented with aortic (Ao) and right atrial pressure-transducing catheters. The Doppler ultrasound device was adhered to the neck over the carotid artery. Continuous electrocardiogram, pressure readings, and Doppler signal were recorded. Each swine underwent multiple episodes of fibrillation and resuscitation. Episodes of true-PEA and pseudo-PEA were retrospectively identified from all resuscitation attempts by examination of electrocardiogram and Ao waveforms. The sensitivity and specificity of the device to detect pseudo-PEA was obtained using observers blinded to Ao waveform recordings.

RESULTS: There was good interobserver reliability related to identification of pseudo- and true-PEA (κ = 0.873). The observers blinded to Ao waveform recordings agreed on 8 of the 9 episodes of pseudo-PEA, whereas 4 false positives of 26 true-PEA events were reported (sensitivity, 0.89; specificity, 0.85). The Doppler device was able to detect carotid flow velocity over a wide range of Ao blood pressures.

CONCLUSIONS: This hands-free, noninvasive Doppler ultrasound device can reliably differentiate pseudo-PEA from true-PEA during resuscitation from cardiac arrest, detecting pressure gradient changes of less than 5 mm Hg through to normotension. This device distinguishes conditions of no cardiac output from low cardiac output and may have applications for use during resuscitation from various etiologies of arrest and shock.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"