Add like
Add dislike
Add to saved papers

A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks.

A series of five zeolitic imidazolate frameworks (ZIFs) have been synthesized using zinc(II) acetate and five different 4,5-functionalized imidazole units, namely ZIF-25, -71, -93, -96, and -97. These 3-D porous frameworks have the same underlying topology (RHO) with Brunauer-Emmet-Teller surface areas ranging from 564 to 1110 m(2)/g. The only variation in structure arises from the functional groups that are directed into the pores of these materials, which include -CH(3), -OH, -Cl, -CN, -CHO, and -NH(2); therefore these 3-D frameworks are ideal for the study of the effect of functionality on CO(2) uptake. Experimental results show CO(2) uptake at approximately 800 Torr and 298 K ranging from 0.65 mmol g(-1) in ZIF-71 to 2.18 mmol g(-1) in ZIF-96. Molecular modeling calculations reproduce the pronounced dependence of the equilibrium adsorption on functionalization and suggest that polarizability and symmetry of the functionalization on the imidazolate are key factors leading to high CO(2) uptake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app