Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Amplified energy transfer in conjugated polymer nanoparticle tags and sensors.

Nanoscale 2010 October
Nanoparticles primarily consisting of π-conjugated polymers have emerged as extraordinarily bright fluorescent tags with potential applications in biological imaging and sensing. As fluorescent tags, conjugated polymer nanoparticles possess a number of advantageous properties, such as small particle size, extraordinary fluorescence brightness, excellent photostability, and high emission rate. Exciton diffusion occurring in the nanoparticles results in amplified energy transfer, doubling the energy transfer efficiency in some cases. Amplified energy transfer has been exploited to obtain highly red-shifted emission, oxygen-sensing nanoparticles, and fluorescence photoswitching. Additional observed phenomena are attributable to amplified energy transfer in conjugated polymers, including superquenching by metal nanoparticles, and fluorescence modulation by hole polarons. This feature article presents an overview of recent investigations of optical properties and energy transfer phenomena of this relatively novel type of fluorescent nanoparticle with a viewpoint towards demanding fluorescence-based imaging and sensing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app