JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms.

Removal of detrimental biofilms from surfaces exposed in the marine environment remains a challenge. A strain of Bacillus pumilus was isolated from the surface of titanium coupons immersed in seawater in the vicinity of Madras Atomic Power Station (MAPS) on the East coast of India. The bacterium formed extensive biofilms when compared to species such as Bacillus licheniformis, Pseudomonas aeruginosa PAO1 and Pseudomonas aureofaciens. A commercially available rhamnolipid was assessed for its ability to inhibit adhesion and disrupt pre-formed B. pumilus biofilms. The planktonic growth of B. pumilus cells was inhibited by concentrations >1.6mM. We studied the effect of various concentrations (0.05-100mM) of the rhamnolipid on adhesion of B. pumilus cells to polystyrene microtitre plates, wherein the effectiveness varied from 46 to 99%. Biofilms of B. pumilus were dislodged efficiently at sub-MIC concentrations, suggesting the role of surfactant activity in removing pre-formed biofilms. Scanning electron microscopy (SEM) confirmed the removal of biofilm-matrix components and disruption of biofilms by treatment with the rhamnolipid. The results suggest the possible use of rhamnolipids as efficient anti-adhesive and biofilm-disrupting agents with potential applications in controlling biofilms on surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app