Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Proteomic analysis of Sox2-associated proteins during early stages of mouse embryonic stem cell differentiation identifies Sox21 as a novel regulator of stem cell fate.

Stem Cells 2010 October
Small increases in the levels of master regulators, such as Sox2, in embryonic stem cells (ESC) have been shown to promote their differentiation. However, the mechanism by which Sox2 controls the fate of ESC is poorly understood. In this study, we employed multidimensional protein identification technology and identified >60 nuclear proteins that associate with Sox2 early during ESC differentiation. Gene ontology analysis of Sox2-associated proteins indicates that they participate in a wide range of processes. Equally important, a significant number of the Sox2-associated proteins identified in this study have been shown previously to interact with Oct4, Nanog, Sall4, and Essrb. Moreover, we examined the impact of manipulating the expression of a Sox2-associated protein on the fate of ESC. Using ESC engineered for inducible expression of Sox21, we show that ectopic expression of Sox21 in ESC induces their differentiation into specific cell types, including those that express markers representative of neurectoderm and heart development. Collectively, these studies provide new insights into the range of molecular processes through which Sox2 is likely to influence the fate of ESC and provide further support for the conclusion that the expression of Sox proteins in ESC must be precisely regulated. Importantly, our studies also argue that Sox2, along with other pluripotency-associated transcription factors, is woven into highly interconnected regulatory networks that function at several levels to control the fate of ESC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app