JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis.

We have previously shown, using a Cre-LoxP strategy, that vascular endothelial growth factor (VEGF) is required for the development and maintenance of skeletal muscle capillarity in sedentary adult mice. To determine whether VEGF expression is required for skeletal muscle capillary adaptation to exercise training, gastrocnemius muscle capillarity was measured in myocyte-specific VEGF gene-deleted (mVEGF(-/-)) and wild-type (WT) littermate mice following 6 wk of treadmill running (1 h/day, 5 days/wk) at the same running speed. The effect of training on metabolic enzyme activity levels and whole body running performance was also evaluated in mVEGF(-/-) and WT mice. Posttraining capillary density was significantly increased by 59% (P < 0.05) in the deep muscle region of the gastrocnemius in WT mice but did not change in mVEGF(-/-) mice. Maximal running speed and time to exhaustion during submaximal running increased by 20 and 13% (P < 0.05), respectively, in WT mice after training but were unchanged in mVEGF(-/-) mice. Training led to increases in skeletal muscle citrate synthase (CS) and phosphofructokinase (PFK) activities in both WT and mVEGF(-/-) mice (P < 0.05), whereas β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity was increased only in WT mice. These data demonstrate that skeletal muscle capillary adaptation to physical training does not occur in the absence of myocyte-expressed VEGF. However, skeletal muscle metabolic adaptation to exercise training takes place independent of myocyte VEGF expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app