JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mutual relationship between stacking and hydrogen bonding in DNA. Theoretical study of guanine-cytosine, guanine-5-methylcytosine, and their dimers.

The mutual relationship between stacking and hydrogen-bonding and the possible influence of stacking in the different behavior of cytosine (C) and 5-methylcytosine (C') in DNA have been studied through complete DFT optimization of different structures of G-C and G-C' dimers (i.e., G-C/C-G and G-C'/C'-G), using four different functionals. Our results show that stacking leads to an increase of the O(6)...H-N(4) hydrogen bond length and to a simultaneous decrease of the N(2)-H...O(2) one, in such a way that both lengths approach each other and, in some cases, an inversion occurs. These results suggest that stacking can be a factor to explain the disparity between theory and experiment on the relative strength of the two lateral hydrogen bonds. Regarding the difference between cytosine and 5-methylcytosine, we have shown that methylation enhances the stacking interactions, mainly due to the increase of polarizability. Methylation also favors the existence of slid structures which can produce local distortions of DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app