Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bone morphogenetic protein-7 enhances cementoblast function in vitro.

BACKGROUND: Bone morphogenetic protein (BMP)-7 is a potent bone-inducing factor and was shown to promote periodontal regeneration in vivo and in vitro; however, to our knowledge, the specific effect of BMP-7 on cementoblasts has not been defined. We aimed to investigate the effects of BMP-7 on cementoblasts, which are cells responsible for tooth root-cementum formation. We hypothesized that BMP-7 would regulate mineralized tissue-associated genes in cementoblasts and influence the expression profile of genes associated with cementoblast extracellular matrix (ECM) and cell adhesion molecules (CAMs).

METHODS: A murine immortalized cementoblast cell line (OCCM.30) was cultured with and without 50 ng/ml BMP-7. After 72 hours, total RNA was isolated, and mRNA levels for bone/cementum markers, including bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor-2 (Runx2), were investigated by real-time quantitative reverse transcription-polymerase chain reaction (Q-PCR). In vitro mineral nodule formation was assayed on day 8 using von Kossa staining. A pathway-specific gene-expression array was used to determine BMP-7-responsive ECM and CAM genes in cementoblasts.

RESULTS: Mineralized tissue markers were strongly regulated by BMP-7, with an almost three-fold increase in BSP and OCN transcripts and significant increases in OPN and Runx2 mRNA expressions. BMP-7 treatment markedly stimulated cementoblast-mediated biomineralization in vitro compared to untreated cells at day 8. BMP-7 treatment altered the OCCM.30 expression profile for ECM and CAM functional gene groups. BMP-7 tended to increase the expression of collagens and matrix metalloproteinases (MMPs), mildly decreased tissue inhibitors of MMPs (TIMPs), and had mixed regulatory effects on integrins. Using Q-PCR, selected array results were confirmed, including a significant BMP-7-induced increase in MMP-3 and a decrease in TIMP-2 mRNA expression.

CONCLUSION: These results support the promising applications of BMP-7 in therapies aimed at regenerating periodontal tissues lost as a consequence of disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app