JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies.

Human Molecular Genetics 2010 October 16
Mutations in fukutin-related protein (FKRP) cause a common subset of muscular dystrophies characterized by aberrant glycosylation of alpha-dystroglycan (α-DG), collectively known as dystroglycanopathies. The clinical variations associated with FKRP mutations range from mild limb-girdle muscular dystrophy type 2I with predominantly muscle phenotypes to severe Walker-Warburg syndrome and muscle-eye-brain disease with striking structural brain and eye defects. In the present study, we have generated animal models and demonstrated that ablation of FKRP functions is embryonic lethal and that the homozygous-null embryos die before reaching E12.5. The homozygous knock-in mouse carrying the missense P448L mutation almost completely lacks functional glycosylation of α-DG in muscles and brain, validating the essential role of FKRP in the functional glycosylation of α-DG. However, the knock-in mouse survives and develops a wide range of structural abnormalities in the central nervous system, characteristics of neuronal migration defects. The brain and eye defects are highly reminiscent of the phenotypes seen in severe dystroglycanopathy patients. In addition, skeletal muscles develop progressive muscular dystrophy. Our results confirm that post-translational modifications of α-DG are essential for normal development of the brain and eyes. In addition, both the mutation itself and the levels of FKRP expression are equally critical for the survival of the animals. The exceptionally wide clinical spectrums recapitulated in the P448L mice also suggest the involvement of other factors in the disease progression. The mutant mouse represents a valuable model to further elucidate the functions of FKRP and develop therapies for FKRP-related muscular dystrophies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app