Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Series behavior of lanthanoid(III) complexes with the alpha-1-Wells-Dawson heteropolyoxoanion in acetonitrile: electrochemistry and Ln coordination.

The tetra-n-butylammonium (TBA(+)) salts for a series of lanthanoid(III) (Ln = Nd, Sm, Eu, Tb, Dy, Yb, and Y) complexes with the alpha-1-isomer of the Wells-Dawson heteropolyoxoanion, alpha-1-[P(2)W(17)O(61)](10-), were prepared and characterized by voltammetry, controlled-potential bulk electrolysis, Eu L(3)-edge XANES spectroelectrochemistry, and Ln L(3)-edge X-ray absorption spectroscopy. Aspects of the series behavior across the 4f period for the complex anions with nominal 1 : 1 Ln(III):alpha-1-[P(2)W(17)O(61)](10-) stoichiometries are detailed. The voltammetric response of the alpha-1 ligand alone in dry acetonitrile (with 0.1 M (TBA)PF(6) electrolyte) is concentration independent and remarkably well-defined with five waves attributable to W-based redox processes. The formation of heteropoly blue solutions upon electrochemical reduction results in chemical instabilities and isomerization. The deliberate addition of water turns an otherwise ideal response into a broad and poorly resolved one, wherein the first reduction process is shifted 150 mV to more positive electrode potentials. Upon its coordination with Ln(III) ions, the voltammetric response develops notable complexities with as many as ten concentration-dependent couples attributable to W-based redox processes of the Ln:alpha-1 complexes. The results from in situ Eu L(3)-edge XANES of the Eu(III):alpha-1 complex provide no evidence for the one-electron reduction of Eu(III) at controlled electrode potentials comparable to those that were previously found to form Eu(II) in the potassium salt of the corresponding Eu(III) complex upon reduction in an aqueous electrolyte. To explain the contrasting system behaviors, the Ln(III) coordination environments in the TBA(5)H(2)[(H(2)O)(n)Ln(alpha-1-P(2)W(17)O(61))] solid salts, including the extent of Ln hydration (n) upon their dissolution in acetonitrile, were determined through use of EXAFS, which demonstrates a structural uniformity among the salts and their acetonitrile solutions, wherein the average Ln-O interatomic distances and O coordination numbers reveal variations that are consistent with the effects of the lanthanoid contraction. The side-by-side comparison of the solid and solution data provides evidence that is consistent with a partial solvent (H(2)O-CH(3)CN) exchange upon dissolution in MeCN. Details of the Ln(III) coordination chemistry, wherein the decrease in the ionic radius from the large, light Nd(III) to the small, heavy Yb(III), are presented in the context of known structural and physical phenomena of acetonitrile solvates, aqua ions, and the corresponding water-soluble K(7)[(H(2)O)(4)Eu(alpha-1-P(2)W(17)O(61))] complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app