Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The current high prevalence of dietary zinc inadequacy among children and women in rural Bangladesh could be substantially ameliorated by zinc biofortification of rice.

Journal of Nutrition 2010 September
Rural Bangladeshi populations have a high risk of zinc deficiency due to their consumption of a predominantly rice-based diet with few animal-source foods. Breeding rice for higher zinc content would offer a sustainable approach to increase the population's zinc intakes. The objectives of the study were to quantify usual rice and zinc intakes in young children and their adult female primary caregivers and to simulate the potential impact of zinc-biofortified rice on their zinc intakes. We measured dietary intake in a representative sample of 480 children (ages 24-48 mo) and their female caregivers residing in 2 rural districts of northern Bangladesh. Dietary intakes were estimated by 12-h weighed records and 12-h recall in homes on 2 nonconsecutive days. Serum zinc concentrations were determined in a subsample of children. The median (25th, 75th percentile) rice intakes of children and female caregivers were 134 (99, 172) and 420 (365, 476) g raw weight/d, respectively. The median zinc intakes were 2.5 (2.1, 2.9) and 5.4 (4.8, 6.1) mg/d in children and women, respectively. Twenty-four percent of children had low serum zinc concentrations ( < 9.9 micromol/L) after adjusting for elevated acute phase proteins. Rice was the main source of zinc intake, providing 49 and 69% of dietary zinc to children and women, respectively. The prevalence of inadequate zinc intakes was high in both the children (22%) and women (73-100%). Simulated increases in rice zinc content to levels currently achievable through selective breeding decreased the estimated prevalence of inadequacy to 9% in children and 20-85% in women, depending on the assumptions used to estimate absorption. Rural Bangladeshi children and women have inadequate intakes of zinc. Zinc biofortification of rice has the potential to markedly improve the zinc adequacy of their diets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app