COMPARATIVE STUDY
JOURNAL ARTICLE

Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology

Nahid Turan, Sunita Katari, Leigh F Gerson, Raffi Chalian, Michael W Foster, John P Gaughan, Christos Coutifaris, Carmen Sapienza
PLoS Genetics 2010 July 22, 6 (7): e1001033
20661447
Epidemiological studies have reported a higher incidence of rare disorders involving imprinted genes among children conceived using assisted reproductive technology (ART), suggesting that ART procedures may be disruptive to imprinted gene methylation patterns. We examined intra- and inter-individual variation in DNA methylation at the differentially methylated regions (DMRs) of the IGF2/H19 and IGF2R loci in a population of children conceived in vitro or in vivo. We found substantial variation in allele-specific methylation at both loci in both groups. Aberrant methylation of the maternal IGF2/H19 DMR was more common in the in vitro group, and the overall variance was also significantly greater in the in vitro group. We estimated the number of trophoblast stem cells in each group based on approximation of the variance of the binomial distribution of IGF2/H19 methylation ratios, as well as the distribution of X chromosome inactivation scores in placenta. Both of these independent measures indicated that placentas of the in vitro group were derived from fewer stem cells than the in vivo conceived group. Both IGF2 and H19 mRNAs were significantly lower in placenta from the in vitro group. Although average birth weight was lower in the in vitro group, we found no correlation between birth weight and IGF2 or IGF2R transcript levels or the ratio of IGF2/IGF2R transcript levels. Our results show that in vitro conception is associated with aberrant methylation patterns at the IGF2/H19 locus. However, very little of the inter- or intra-individual variation in H19 or IGF2 mRNA levels can be explained by differences in maternal DMR DNA methylation, in contrast to the expectations of current transcriptional imprinting models. Extraembryonic tissues of embryos cultured in vitro appear to be derived from fewer trophoblast stem cells. It is possible that this developmental difference has an effect on placental and fetal growth.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20661447
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"