Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena).

The purpose of this study was to develop a simple biological method for the synthesis of Ag nanoparticles (AgNPs) using Lippia citriodora leaves aqueous extract as reducing agent. Transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and visible absorption spectroscopy (UV-vis) confirmed the reduction of silver ions to AgNPs. Stable, spherical crystalline AgNPs with well defined dimensions (average size of 15-30 nm) were obtained, on treating aqueous silver nitrate with the plant leaf aqueous extract. The kinetic of particles formation was proportional to the effect of reducing agent concentration and was enhanced by the increase of temperature from 25 degrees C to 95 degrees C. Time, temperature and extract concentration did not influence significantly the shape and size of nanoparticles. In order to identify the compounds responsible for the bioreduction of silver ions and stabilization of the AgNPs formed, we investigated the constituents of L. citriodora aqueous extract by high performance liquid chromatography (HPLC) and mass spectrometry (MS). The main compounds found were verbascoside, isoverbascoside, chrysoeriol-7-O-diglucoronide and luteonin-7-O-diglucoronide. The data obtained suggests that the isoverbascoside compound is responsible for Ag(+) ions reduction and act as capping agents of the nanoparticles afterwards.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app