Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Critical molecular regulators, histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis.

OBJECTIVE: This study examined differential gene expression, histomorphometric indices and relationships between these, in femoral trabecular bone from osteoarthritis (OA) patients and control (CTL) subjects, with the aim of identifying potential molecular drivers consistent with changes in structural and remodelling indices in the OA pathology.

MATERIALS AND METHODS: Bone samples from the intertrochanteric (IT) region were obtained from age and sex-matched cohorts of 23 primary hip OA patients and 21 CTL subjects. Real-time polymerase chain reaction (PCR) and histomorphometric analysis were performed on each sample and correlations between gene expression and histomorphometric variables determined.

RESULTS: Alterations in gene expression, structural indices and correlations between these were found in OA bone compared to CTL. In OA bone, expression of critical regulators of osteoblast differentiation (TWIST1) and function (PTEN, TIMP4) were decreased, while genes associated with inflammation (SMAD3, CD14) were increased. Bone structural and formation indices (BV/TV, Tb.N, OS/BS) were increased, whereas resorption indices (ES/BS, ES/BV) were decreased. Importantly, significant correlations in CTL bone between CTNNB1 expression and formation indices (OS/BS, OS/BV, OV/BV) were absent in OA bone, indicating altered WNT/β-catenin signalling. TWIST1 expression and BV/TV were correlated in CTL bone, but not in OA bone, consistent with altered osteoblastogenesis in OA. Matrix metalloproteinase 25 (MMP25) expression and remodelling indices (ES/BS, ES/BV, ES/TV) were correlated only in OA pointing to aberrant bone remodelling in this pathology.

CONCLUSIONS: These findings indicate an altered state of osteoblast differentiation and function in OA driven by several key molecular regulators. In association with this differential gene expression, an altered state of both trabecular bone remodelling and resulting microarchitecture were also observed, further characterising the pathogenesis of primary hip OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app