Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulation of gene expression by FSP27 in white and brown adipose tissue.

BACKGROUND: Brown and white adipose tissues (BAT and WAT) play critical roles in controlling energy homeostasis and in the development of obesity and diabetes. The mouse Fat-Specific protein 27 (FSP27), a member of the cell death-inducing DFF45-like effector (CIDE) family, is expressed in both BAT and WAT and is associated with lipid droplets. Over-expression of FSP27 promotes lipid storage, whereas FSP27 deficient mice have improved insulin sensitivity and are resistant to diet-induced obesity. In addition, FSP27-deficient white adipocytes have reduced lipid storage, smaller lipid droplets, increased mitochondrial activity and a higher expression of several BAT-selective genes. To elucidate the molecular mechanism by which FSP27 controls lipid storage and gene expression in WAT and BAT, we systematically analyzed the gene expression profile of FSP27-deficient WAT by microarray analysis and compared the expression levels of a specific set of genes in WAT and BAT by semi-quantitative real-time PCR analysis.

RESULTS: BAT-selective genes were significantly up-regulated, whereas WAT-selective genes were down-regulated in the WAT of FSP27-deficient mice. The expression of the BAT-selective genes was also dramatically up-regulated in the WAT of leptin/FSP27 double deficient mice. In addition, the expression levels of genes involved in multiple metabolic pathways, including oxidative phosphorylation, the TCA cycle, fatty acid synthesis and fatty acid oxidation, were increased in the FSP27-deficient WAT. In contrast, the expression levels for genes involved in extracellular matrix remodeling, the classic complement pathway and TGF-beta signaling were down-regulated in the FSP27-deficient WAT. Most importantly, the expression levels of regulatory factors that determine BAT identity, such as CEBP alpha/beta, PRDM16 and major components of the cAMP pathway, were markedly up-regulated in the WAT of FSP27-deficient mice. The expression levels of these regulatory factors were also up-regulated in leptin/FSP27 double deficient mice. Interestingly, distinct gene expression profiles were observed in the BAT of FSP27-deficient mice. Taken together, these data suggest that the WAT of FSP27-deficient mice have a gene expression profile similar to that of BAT.

CONCLUSIONS: FSP27 acts as a molecular determinant that controls gene expression for a diversity of metabolic and signaling pathways and, in particular, the expression of regulatory factors, including CEBP alpha/beta, PRDM16 and components of the cAMP signaling pathway, that control the identity of WAT and BAT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app