JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1.

Mitochondria in cells comprise a tubulovesicular network shaped continuously by complementary fission and fusion events. The mammalian Drp1 protein plays a key role in fission, while Mfn1, Mfn2, and OPA1 are required for fusion. Shifts in the balance between these opposing processes can occur rapidly, indicating that modifications to these proteins may regulate mitochondrial membrane dynamics. We highlight posttranslational modifications of the mitochondrial fission protein Drp1, for which these regulatory mechanisms are best characterized. This dynamin-related GTPase undergoes a number of steps to mediate mitochondrial fission, including translocation from cytoplasm to the mitochondrial outer membrane, higher-order assembly into spirals, GTP hydrolysis associated with a conformational change and membrane deformation, and ultimately disassembly. Many of these steps may be influenced by covalent modification of Drp1. We discuss the dynamic nature of Drp1 modifications and how they contribute not only to the normal regulation of mitochondrial division, but also to neuropathologic processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app