The combination of multiple receptor tyrosine kinase inhibitor and mammalian target of rapamycin inhibitor overcomes erlotinib resistance in lung cancer cell lines through c-Met inhibition

Ichiro Nakachi, Katsuhiko Naoki, Kenzo Soejima, Ichiro Kawada, Hideo Watanabe, Hiroyuki Yasuda, Sohei Nakayama, Satoshi Yoda, Ryosuke Satomi, Shinnosuke Ikemura, Hideki Terai, Takashi Sato, Akitoshi Ishizaka
Molecular Cancer Research: MCR 2010, 8 (8): 1142-51
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) show antitumor activity in a subset of non-small cell lung cancer (NSCLC) patients. However, the initial tumor response is followed by recurrence. Several studies have suggested the importance of other receptor tyrosine kinases (RTK) and downstream kinases as potential targets in the treatment of NSCLC. We used the multiple-RTK inhibitor AEE788, which inhibits EGFR, vascular endothelial growth factor receptor, and human epidermal growth factor receptor 2, with and without the downstream kinase inhibitor RAD001 (an inhibitor of mammalian target of rapamycin). AEE788 inhibited cell growth more effectively than did erlotinib in three NSCLC cell lines examined (A549, H1650, and H1975). However, in the EGFR-TKI-resistant cell line H1975 harboring T790M resistance mutation, cell growth inhibition by AEE788 was only mild, and the phosphorylation of its leading targets such as EGFR and vascular endothelial growth factor receptor 2 was not inhibited. In H1975, AEE788 induced significantly greater cell growth inhibition when combined with RAD001 than when used alone. This cooperative effect was not seen with the combination of erlotinib and RAD001. We found that c-Met was highly phosphorylated in this cell line, and the phosphorylated c-Met was inhibited effectively by AEE788. Using a phospho-RTK array, the phosphorylation of c-Met and insulin-like growth factor-I receptor was inhibited by AEE788. These results suggest that upstream RTK inhibitor overcomes the acquired resistance to EGFR-TKI when combined with downstream kinase inhibitor. Thus, the combined inhibition of upstream and downstream RTKs is a promising strategy for the treatment of NSCLC.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"