Add like
Add dislike
Add to saved papers

Watershed segmentation of dermoscopy images using a watershed technique.

BACKGROUND/PURPOSE: Automatic lesion segmentation is an important part of computer-based image analysis of pigmented skin lesions. In this research, a watershed algorithm is developed and investigated for adequacy of skin lesion segmentation in dermoscopy images.

METHODS: Hair, black border and vignette removal methods are introduced as preprocessing steps. The flooding variant of the watershed segmentation algorithm was implemented with novel features adapted to this domain. An outer bounding box, determined by a difference function derived from horizontal and vertical projection functions, is added to estimate the lesion area, and the lesion area error is reduced by a linear estimation function. As a post-processing step, a second-order B-Spline smoothing method is introduced to smooth the watershed border.

RESULTS: Using the average of three sets of dermatologist-drawn borders as the ground truth, an overall error of 15.98% was obtained using the watershed technique.

CONCLUSION: The implementation of the flooding variant of the watershed algorithm presented here allows satisfactory automatic segmentation of pigmented skin lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app