Add like
Add dislike
Add to saved papers

Dynamic changes in cortical and spinal activities with different representations of isometric motor actions and efforts.

Brain Stimulation 2008 January
BACKGROUND: Positioning the shoulder joint from 30 degrees adduction (anterior [ANT]) to 30 degrees abduction (posterior [POST]) in the horizontal plane modifies the corticospinal output to hand and forearm muscles in humans.

OBJECTIVE: We investigated the mechanisms by which the central nervous system (CNS) maintains force output under conditions of increased effort and reduced corticospinal activity.

METHODS: Ten healthy subjects were studied with the shoulder joint fully supported and passively kept either in ANT or POST. Changes in motor-evoked potentials (MEPs) to transcranial magnetic stimulation (TMS), intracortical inhibition (ICI), intracortical facilitation (ICF), H-reflex and F-waves were studied at force levels corresponding to 10% maximum voluntary contraction (MVC) of abductor digiti minimi (ADM) in ANT for both shoulder positions. In addition, premovement changes in ADM MEP size were assessed in a choice reaction time paradigm in the two shoulder positions.

RESULTS: ADM MEPs were larger in POST than in ANT either during or before ADM voluntary contraction, pointing to increased corticospinal excitability in both conditions. ICI and ICF were increased and decreased, respectively, indicating a general disfacilitation on primary motor cortical (M1) output to ADM in POST. F-waves and H-reflexes were increased and decreased, respectively, indicating postsynaptic facilitation and increased presynaptic inhibition at spinal cord level in POST.

CONCLUSIONS: A larger cortical output is produced in POST to maintain the same force levels as in ANT. A contributory role of premotor regions is hypothesized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app