Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Different SNP combinations in the GCH1 gene and use of labor analgesia.

BACKGROUND: The aim of this study was to investigate if there is an association between different SNP combinations in the guanosine triphosphate cyclohydrolase (GCH1) gene and a number of pain behavior related outcomes during labor. A population-based sample of pregnant women (n = 814) was recruited at gestational week 18. A plasma sample was collected from each subject. Genotyping was performed and three single nucleotide polymorphisms (SNP) previously defined as a pain-protective SNP combination of GCH1 were used.

RESULTS: Homozygous carriers of the pain-protective SNP combination of GCH1 arrived to the delivery ward with a more advanced stage of cervical dilation compared to heterozygous carriers and non-carriers. However, homozygous carriers more often used second line labor analgesia compared to the others.

CONCLUSION: The pain-protective SNP combination of GCH1 may be of importance in the limited number of homozygous carriers during the initial dilation of cervix but upon arrival at the delivery unit these women are more inclined to use second line labor analgesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app