Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells.

The HGF/c-Met pathway is an important regulator of signaling pathways responsible for invasion and metastasis of most human cancers, including prostate cancer. Exposure of DU145 prostate tumor cells to HGF stimulates the PI3-kinase and MAPK pathways, leading to increased scattering, motility, and invasion, which was prevented by the addition of EGCG. EGCG acted at the level of preventing phosphorylation of tyrosines 1234/1235 in the kinase domain of the c-Met receptor without effecting dimerization. HGF-induced changes were independent of the formation of reactive oxygen species, suggesting that EGCG functioned independent of its antioxidant ability. ECG, another tea polyphenol, was as effective as EGCG, while EGC and EC were less effective. EGCG added up to 4 h after the addition of HGF still blocked cell scattering and reduced the HGF-induced phosphorylation of c-Met, Akt, and Erk, suggesting that EGCG could act both by preventing activation of c-Met by HGF and by attenuating the activity of pathways already induced by HGF. HGF did not activate the MAPK and PI3-K pathways in cells treated with methyl-beta-cyclodextrin (mCD) to remove cholesterol. Furthermore, subcellular fractionation approaches demonstrated that only phosphorylated c-Met accumulated in Triton X-100 membrane insoluble fractions, supporting a role for lipid rafts in regulating c-Met signaling. Finally, EGCG treatment inhibited DiIC16 incorporation into membrane lipid ordered domains, and cholesterol partially inhibited the EGCG effects on signaling. Together, these results suggest that green tea polyphenols with the R1 galloyl group prevent activation of the c-Met receptor by altering the structure or function of lipid rafts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app