Add like
Add dislike
Add to saved papers

Theoretical multilevel approach for studying the photophysical properties of organic dyes in solution.

Classical all-atom molecular dynamics (MD) simulations and quantum mechanical time-dependent density functional theory (TD-DFT) calculations are employed to study the conformational and photophysical properties of tetramethylrhodamine iso-thiocyanate (TRITC) in solution. The potential energy surface (PES) is explored and the minimum energy structure is identified both in water and ethanol. An accurate force-field is parameterized on the computed quantum mechanical data and used in the classical dynamics to take into account solute vibrations and solvent effects. Several configurations, extracted from the MD trajectories, are employed to investigate absorbance spectra in a time dependent approach, considering solvation models of increasing complexity. Explicit- and implicit-solvent approaches, as well as combinations of them are used to predict and explain the absorption properties and the electronic structure of the dye. The defined theoretical methodology succeeds in reproducing correctly the available experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app