Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Volume kinetics for infusion fluids.

Anesthesiology 2010 August
Volume kinetics is a method used for analyzing and simulating the distribution and elimination of infusion fluids. Approximately 50 studies describe the disposition of 0.9% saline, acetated and lactated Ringer's solution, based on repeated measurements of the hemoglobin concentration and (sometimes) the urinary excretion. The slow distribution to the peripheral compartment results in a 50-75% larger plasma dilution during an infusion of crystalloid fluid than would be expected if distribution had been immediate. A drop in the arterial pressure during induction of anesthesia reduces the rate of distribution even further. The renal clearance of the infused fluid during surgery is only 10-20% when compared with that in conscious volunteers. Some of this temporary decrease can be attributed to the anesthesia and probably also to preoperative psychologic stress or dehydration. Crystalloid fluid might be allocated to "nonfunctional" fluid spaces in which it is unavailable for excretion. This amounts to approximately 20-25% during minor (thyroid) surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app