Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems.

Eukaryotic Cell 2010 September
Over the past 5 years, large-scale sequencing has been revolutionized by the development of several so-called next-generation sequencing (NGS) technologies. These have drastically increased the number of bases obtained per sequencing run while at the same time decreasing the costs per base. Compared to Sanger sequencing, NGS technologies yield shorter read lengths; however, despite this drawback, they have greatly facilitated genome sequencing, first for prokaryotic genomes and within the last year also for eukaryotic ones. This advance was possible due to a concomitant development of software that allows the de novo assembly of draft genomes from large numbers of short reads. In addition, NGS can be used for metagenomics studies as well as for the detection of sequence variations within individual genomes, e.g., single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), or structural variants. Furthermore, NGS technologies have quickly been adopted for other high-throughput studies that were previously performed mostly by hybridization-based methods like microarrays. This includes the use of NGS for transcriptomics (RNA-seq) or the genome-wide analysis of DNA/protein interactions (ChIP-seq). This review provides an overview of NGS technologies that are currently available and the bioinformatics analyses that are necessary to obtain information from the flood of sequencing data as well as applications of NGS to address biological questions in eukaryotic microorganisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app