Add like
Add dislike
Add to saved papers

Magnetic resonance and fluorescence imaging of doxorubicin-loaded nanoparticles using a novel in vivo model.

We report here the in vivo combined-modality imaging of multifunctional drug delivery nanoparticles. These dextran core-based stealth liposomal nanoparticles (nanosomes) contained doxorubicin, iron oxide for magnetic resonance imaging (MRI) contrast, and BODIPY for fluorescence. The particles were long-lived in vivo because of surface decoration with polyethylene glycol and the incorporation of acetylated lipids that were ultraviolet cross-linked for physical stability. We developed a rodent dorsal skinfold window chamber that facilitated both MRI and non-invasive optical imaging of nanoparticle accumulation in the same tumors. Chamber tumors were genetically labeled with DsRed-2, which enabled co-localization of the MR images, the red fluorescence of the tumor, and the blue fluorescence of the nanoparticles. The nanoparticle design and MR imaging developed with the window chamber were then extended to orthotopic pancreatic tumors expressing DsRed-2. The tumors were MR-imaged using iron oxide-dextran liposomes and by fluorescence to demonstrate the deep imaging capability of these nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app