Relationship of neural axis level of injury to motor recovery and health-related quality of life in patients with a thoracolumbar spinal injury

Stephen P Kingwell, Vanessa K Noonan, Charles G Fisher, Douglas A Graeb, Ory Keynan, Hongbin Zhang, Marcel F Dvorak
Journal of Bone and Joint Surgery. American Volume 2010 July 7, 92 (7): 1591-9

BACKGROUND: Outcomes following traumatic conus medullaris and cauda equina injuries are typically predicted on the basis of the vertebral level of injury. This may be misleading as it is based on the assumption that the conus medullaris terminates at L1 despite its variable location. Our primary objective was to determine whether the neural axis level of injury (the spinal cord, conus medullaris, or cauda equina) as determined with magnetic resonance imaging is better than the vertebral level of injury for prediction of motor improvement in patients with a neurological deficit secondary to a thoracolumbar spinal injury.

METHODS: Patients diagnosed with a motor deficit secondary to a thoracolumbar spinal injury, and who met the inclusion criteria, were contacted. Each patient had a magnetic resonance imaging scan that was reviewed by a spine surgeon and a neuroradiologist to determine the termination of the conus medullaris and the neural axis level of injury. Patient demographic data were collected prospectively at the time of admission. Admission and follow-up neurological assessments were performed by formally trained dedicated spine physiotherapists.

RESULTS: Fifty-one patients were evaluated at a median of 6.2 years (range, 2.7 to 12.3 years) postinjury. The final motor scores differed significantly according to whether the patient had a spinal cord injury (mean, 62.8 points; 95% confidence interval, 55.4 to 70.2), conus medullaris injury (mean, 78.6 points; 95% confidence interval, 70.3 to 86.9), or cauda equina injury (mean, 88.8 points; 95% confidence interval, 78.9 to 98.7) (p = 0.0007). A univariate analysis showed the improvement in the motor scores after the cauda equina injuries (mean, 17.1 points; 95% confidence interval, 8.3 to 25.9) to be significantly greater than that after the spinal cord injuries (mean, 7.7 points; 95% confidence interval, 3.1 to 12.3) (p = 0.03). A multivariate analysis showed that an absence of initial sacral sensation had a negative effect on motor recovery by a factor of 13.2 points (95% confidence interval, 4.2 to 22.1). When compared with classifying our patients on the basis of the neural axis level of injury, reclassifying them on the basis of the vertebral level of injury resulted in a misclassification rate of 33%.

CONCLUSIONS: The motor recovery of patients with a thoracolumbar spinal injury and a neurological deficit is affected by both the neural axis level of injury as well as the initial motor score. The results of this study can help the clinician to determine a prognosis for patients who sustain these common injuries provided that he or she evaluates the precise level of neural axis injury utilizing magnetic resonance imaging.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"