Add like
Add dislike
Add to saved papers

Relationship of neural axis level of injury to motor recovery and health-related quality of life in patients with a thoracolumbar spinal injury.

BACKGROUND: Outcomes following traumatic conus medullaris and cauda equina injuries are typically predicted on the basis of the vertebral level of injury. This may be misleading as it is based on the assumption that the conus medullaris terminates at L1 despite its variable location. Our primary objective was to determine whether the neural axis level of injury (the spinal cord, conus medullaris, or cauda equina) as determined with magnetic resonance imaging is better than the vertebral level of injury for prediction of motor improvement in patients with a neurological deficit secondary to a thoracolumbar spinal injury.

METHODS: Patients diagnosed with a motor deficit secondary to a thoracolumbar spinal injury, and who met the inclusion criteria, were contacted. Each patient had a magnetic resonance imaging scan that was reviewed by a spine surgeon and a neuroradiologist to determine the termination of the conus medullaris and the neural axis level of injury. Patient demographic data were collected prospectively at the time of admission. Admission and follow-up neurological assessments were performed by formally trained dedicated spine physiotherapists.

RESULTS: Fifty-one patients were evaluated at a median of 6.2 years (range, 2.7 to 12.3 years) postinjury. The final motor scores differed significantly according to whether the patient had a spinal cord injury (mean, 62.8 points; 95% confidence interval, 55.4 to 70.2), conus medullaris injury (mean, 78.6 points; 95% confidence interval, 70.3 to 86.9), or cauda equina injury (mean, 88.8 points; 95% confidence interval, 78.9 to 98.7) (p = 0.0007). A univariate analysis showed the improvement in the motor scores after the cauda equina injuries (mean, 17.1 points; 95% confidence interval, 8.3 to 25.9) to be significantly greater than that after the spinal cord injuries (mean, 7.7 points; 95% confidence interval, 3.1 to 12.3) (p = 0.03). A multivariate analysis showed that an absence of initial sacral sensation had a negative effect on motor recovery by a factor of 13.2 points (95% confidence interval, 4.2 to 22.1). When compared with classifying our patients on the basis of the neural axis level of injury, reclassifying them on the basis of the vertebral level of injury resulted in a misclassification rate of 33%.

CONCLUSIONS: The motor recovery of patients with a thoracolumbar spinal injury and a neurological deficit is affected by both the neural axis level of injury as well as the initial motor score. The results of this study can help the clinician to determine a prognosis for patients who sustain these common injuries provided that he or she evaluates the precise level of neural axis injury utilizing magnetic resonance imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app