JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mammalian cell growth versus biofilm formation on biomaterial surfaces in an in vitro post-operative contamination model.

Microbiology 2010 October
Biomaterial-associated infections are the major cause of implant failure and can develop many years after implantation. Success or failure of an implant depends on the balance between host tissue integration and bacterial colonization. Here, we describe a new in vitro model for the post-operative bacterial contamination of implant surfaces and investigate the effects of contamination on the balance between mammalian cell growth and bacterial biofilm formation. U2OS osteosarcoma cells were seeded on poly(methyl methacrylate) in different densities and allowed to grow for 24 h in a parallel-plate flow chamber at a low shear rate (0.14 s(-1)), followed by contamination with Staphylococcus epidermidis ATCC 35983 at a shear rate of 11 s(-1). The U2OS cells and staphylococci were allowed to grow simultaneously for another 24 h under low-shear conditions (0.14 s(-1)). Mammalian cell growth was severely impaired when the bacteria were introduced to surfaces with a low initial cell density (2.5 × 10(4) cells cm(-2)), but in the presence of higher initial cell densities (8.2 × 10(4) cells cm(-2) and 17 × 10(4) cells cm(-2)), contaminating staphylococci did not affect cell growth. This study is believed to be the first to show that a critical coverage by mammalian cells is needed to effectively protect a biomaterial implant against contaminating bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app