JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metformin blocks migration and invasion of tumour cells by inhibition of matrix metalloproteinase-9 activation through a calcium and protein kinase Calpha-dependent pathway: phorbol-12-myristate-13-acetate-induced/extracellular signal-regulated kinase/activator protein-1.

BACKGROUND AND PURPOSE: Population studies have revealed that treatment with the anti-diabetic drug metformin is significantly associated with reduced cancer risk, but the underlying mode of action has not been elucidated. The aim of our study was to determine the effect of metformin on tumour invasion and migration, and the possible mechanisms, using human fibrosarcoma HT-1080 cells.

EXPERIMENTAL APPROACH: We employed invasion, migration and gelatin zymography assays to characterize the effect of metformin on HT-1080 cells. Transient transfection assays were performed to gene promoter activities, and immunoblot analysis to study its molecular mechanisms of action.

KEY RESULTS: Metformin inhibited migration and invasion by HT-1080 cells at sub-toxic concentrations. In these cells, metformin also suppressed phorbol-12-myristate-13-acetate (PMA)-enhanced levels of matrix metalloproteinases-9 (MMP-9) protein, mRNA and transcription activity through suppression of activator protein-1 (AP-1) activation. In addition, metformin strongly repressed the PMA-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and protein kinase C(PKC)alpha, whereas the phosphorylation of p38 mitogen-activated protein kinase was not affected by metformin. Metformin decreased the PMA-induced Ca(2+) influx. Furthermore, treatment with an intracellular Ca(2+) chelator (BAPTA-AM) or a selective calmodulin antagonist (W7) markedly decreased PMA-induced MMP-9 secretion and cell migration, as well as activation of ERK and JNK/AP-1.

CONCLUSIONS AND IMPLICATIONS: Metformin inhibited PMA-induced invasion and migration of human fibrosarcoma cells via Ca(2+)-dependent PKCalpha/ERK and JNK/AP-1-signalling pathways. Metformin therefore has the potential to be a potent anti-cancer drug in therapeutic strategies for fibrosarcoma metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app