Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Performance evaluation of the SITE® model to estimate energy flux in a tropical semi-deciduous forest of the southern Amazon Basin.

The SITE® model was originally developed to study the response of tropical ecosystems to varying environmental conditions. The present study evaluated the applicability of the SITE model to simulation of energy fluxes in a tropical semi-deciduous forest of the southern Amazon Basin. The model was simulated with data representing the wet and dry season, and was calibrated according to each season. The output data of the calibrated model [net radiation (Rn), latent heat flux (LE) and sensible heat flux (H)] were compared with data observed in the field for validation. Considering changes in parameter calibration for a time step simulation of 30 min, the magnitude of variation in temporal flux was satisfactory when compared to observation field data. There was a tendency to underestimate and overestimate LE and H, respectively. Of all the calibration parameters, the soil moisture parameter presented the highest variation over the seasons, thus influencing SITE model performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app