Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nanog variability and pluripotency regulation of embryonic stem cells--insights from a mathematical model analysis.

PloS One 2010 June 22
The expression of the transcription factors Oct4, Sox2, and Nanog is commonly associated with pluripotency of mouse embryonic stem (ES) cells. However, recent observations suggest that ES cell populations are heterogeneous with respect to the expression of Nanog and that individual ES cells reversibly change their Nanog expression level. Furthermore, it has been shown that cells exhibiting a low Nanog level are more likely to undergo differentiation. Applying a novel mathematical transcription factor network model we explore mechanisms and feedback regulations to describe the observed variation of the Nanog levels in mouse ES cells. In particular we show that these variations can occur under different assumptions yielding similar experimental characteristics. Based on model predictions we propose experimental strategies to distinguish between these explanations. Concluding from our results we argue that the heterogeneity with respect to the Nanog concentrations is most likely a functional element to control the differentiation propensity of an ES cell population. Furthermore, we provide a conceptual framework that consistently explains Nanog variability and a potential "gate-keeper" function of Nanog expression with respect to the control of ES cell differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app