JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Endothelin-1 inhibits prolyl hydroxylase domain 2 to activate hypoxia-inducible factor-1alpha in melanoma cells.

PloS One 2010 June 22
BACKGROUND: The endothelin B receptor (ET(B)R) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1alpha is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation.

PRINCIPAL FINDINGS: Here we found that in melanoma cells ET-1, ET-2, and ET-3 through ET(B)R, enhance the expression and activity of HIF-1alpha and HIF-2alpha that in turn regulate the expression of vascular endothelial growth factor (VEGF) in response to ETs or hypoxia. Under normoxic conditions, ET-1 controls HIF-alpha stability by inhibiting its degradation, as determined by impaired degradation of a reporter gene containing the HIF-1alpha oxygen-dependent degradation domain encompassing the PHD-targeted prolines. In particular, ETs through ET(B)R markedly decrease PHD2 mRNA and protein levels and promoter activity. In addition, activation of phosphatidylinositol 3-kinase (PI3K)-dependent integrin linked kinase (ILK)-AKT-mammalian target of rapamycin (mTOR) pathway is required for ET(B)R-mediated PHD2 inhibition, HIF-1alpha, HIF-2alpha, and VEGF expression. At functional level, PHD2 knockdown does not further increase ETs-induced in vitro tube formation of endothelial cells and melanoma cell invasiveness, demonstrating that these processes are regulated in a PHD2-dependent manner. In human primary and metastatic melanoma tissues as well as in cell lines, that express high levels of HIF-1alpha, ET(B)R expression is associated with low PHD2 levels. In melanoma xenografts, ET(B)R blockade by ET(B)R antagonist results in a concomitant reduction of tumor growth, angiogenesis, HIF-1alpha, and HIF-2alpha expression, and an increase in PHD2 levels.

CONCLUSIONS: In this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls HIF-1alpha stability and thereby regulates angiogenesis and melanoma cell invasion. These results further indicate that targeting ET(B)R may represent a potential therapeutic treatment of melanoma by impairing HIF-1alpha stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app