JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prediction of metabolite identity from accurate mass, migration time prediction and isotopic pattern information in CE-TOFMS data.

Electrophoresis 2010 July
CE-TOFMS is a powerful method for profiling charged metabolites. However, the limited availability of metabolite standards hinders the process of identifying compounds from detected features in CE-TOFMS data sets. To overcome this problem, we developed a method to identify unknown peaks based on the predicted migration time (t(m)) and accurate m/z values. We developed a predictive model using 375 standard cationic metabolites and support vector regression. The model yielded good correlations between the predicted and measured t(m) (R=0.952 and 0.905 using complete and cross-validation data sets, respectively). Using the trained model, we subsequently predicted the t(m) for 2938 metabolites available from the public databases and assigned tentative identities to noise-filtered features in human urine samples. While 38.9% of the peaks were assigned metabolite names by matching with the standard library alone, the proportion increased to 52.2%. The proposed methodology increases the value of metabolomic data sets obtained from CE-TOFMS profiling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app