OPEN IN READ APP
JOURNAL ARTICLE

Prediction of metabolite identity from accurate mass, migration time prediction and isotopic pattern information in CE-TOFMS data

Masahiro Sugimoto, Akiyoshi Hirayama, Martin Robert, Shinobu Abe, Tomoyoshi Soga, Masaru Tomita
Electrophoresis 2010, 31 (14): 2311-8
20568260
CE-TOFMS is a powerful method for profiling charged metabolites. However, the limited availability of metabolite standards hinders the process of identifying compounds from detected features in CE-TOFMS data sets. To overcome this problem, we developed a method to identify unknown peaks based on the predicted migration time (t(m)) and accurate m/z values. We developed a predictive model using 375 standard cationic metabolites and support vector regression. The model yielded good correlations between the predicted and measured t(m) (R=0.952 and 0.905 using complete and cross-validation data sets, respectively). Using the trained model, we subsequently predicted the t(m) for 2938 metabolites available from the public databases and assigned tentative identities to noise-filtered features in human urine samples. While 38.9% of the peaks were assigned metabolite names by matching with the standard library alone, the proportion increased to 52.2%. The proposed methodology increases the value of metabolomic data sets obtained from CE-TOFMS profiling.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
20568260
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"