JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.

ACS Nano 2010 July 28
This study compares the electrocatalytic activity of nitrogen-doped carbon nanotubes (NCNTs) with multiwalled carbon nanotubes (MWCNTs). Results indicate that NCNTs possess a marked electrocatalytic activity toward oxygen reduction reaction (ORR) by an efficient four-electron process in the alkaline condition, while the process of MWCNTs is through a two-electron pathway. Meanwhile, NCNTs show a very attractive electrochemical performance for the redox reaction of hydrogen peroxide (H2O2) and could be employed as a H2O2 sensor at a low potential of +0.3 V. The sensitivity of the NCNT-based biosensor reaches 24.5 microA/mM, more than 87 times that of the MWCNT-based one. Moreover, NCNTs exhibit striking analytical stability and reproducibility, which enables a reliable and sensitive determination of glucose by monitoring H2O2 produced by an enzymatic reaction between glucose oxidase/glucose or choline oxidase/choline at +0.3 V without the help of the electron mediator. The NCNT-based glucose biosensor has a linear range from 2 to 140 microM with an extremely high sensitivity of 14.9 microA/mM, and the detection limit is estimated to be 1.2 microM at a signal-to-noise ratio of 3. The results indicate that the NCNTs are good nanostructured materials for potential application in biosensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app