JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Simvastatin improves epithelial dysfunction and airway hyperresponsiveness: from asymmetric dimethyl-arginine to asthma.

Altered arginine metabolism, the uncoupling of nitric oxide synthase (NOS) by asymmetric dimethyl-arginine (ADMA), increased oxo-nitrosative stress, and cellular injury were reported in airway epithelial cells in asthma. Statins improve vascular endothelial dysfunction by reducing ADMA and increasing endothelial NOS (eNOS), thereby reducing oxo-nitrosative stress in cardiovascular diseases. Whether statin therapy leads to similar beneficial effects in lung epithelium in asthma is unknown. The effects of simvastatin therapy after sensitization (40 mg/kg, intraperitoneally) on markers of arginine and NO metabolism and features of asthma were ascertained in a murine model of allergic asthma. The effects of simvastatin on the expression of NOS in A549 lung epithelial cells were studied in vitro. Simvastatin induced eNOS in lung epithelial cells in vitro. In acute and chronic models of asthma, simvastatin therapy was associated with significantly reduced airway inflammation, airway hyperresponsiveness, and airway remodeling. ADMA and inducible nitric oxide synthase were reduced by simvastatin, but eNOS was increased. A marked reduction of nitrotyrosine, a marker of oxo-nitrosative stress, was evident in airway epithelium. Cell injury markers such as cytosolic cytochrome c, caspases 3 and 9 and apoptotic protease activating factor 1 (Apaf-1) were also reduced. Simvastatin improves dysfunctional nitric oxide metabolism in allergically inflamed lungs. Important pleiotropic mechanisms may be responsible for the statin-induced reduction of airway inflammation, epithelial injury, and airway hyperresponsiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app