Add like
Add dislike
Add to saved papers

Distribution of Th17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer.

Cancer Science 2010 September
Although Th17 cells reportedly play critical roles in the development of autoimmunity and allergic reactions, information on Th17 cells in cancer-bearing hosts is still limited. In the present study, we investigated the distribution of Th17 cells in relation to regulatory T cells (Treg) in the tumor-infiltrating lymphocytes (TILs), regional lymph node lymphocytes, and peripheral blood lymphocytes of gastric cancer patients. Interleukin (IL)-17-producing CD4(+) cells as Th17 cells and CD4(+)CD25(+)FoxP3(+) cells as Treg were evaluated by flow cytometry and expressed as a percentage of the total CD4(+) cells, in addition to performing a Th1/Th2 balance assay. Moreover, immunohistochemical staining for IL-17 and FoxP3 were performed. In TILs from patients with early disease (n = 27), the frequency of Th17 cells was significantly higher than that in the normal gastric mucosa (23.7 ± 8.9 vs 4.5 ± 3.1%). In TILs from patients with advanced disease (n = 28), the frequency of Th17 cells was also significantly higher, but lower compared to early disease, than that in the normal gastric mucosa (15.1 ± 6.2 vs 4.0 ± 2.0%). This observation for Th17 cell-distribution was also confirmed by immunohistochemistry. When the ratio of Th17/Treg in TILs was evaluated in individual cases, it was more markedly increased in early than in advanced disease. In conclusion, the accumulation of Th17 cells as well as Treg in the tumor microenvironment of gastric cancer occurred in early disease and then the infiltration of Th17 cells gradually decreased according to the disease progression, in contrast to increased Treg.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app