Add like
Add dislike
Add to saved papers

Chiroptical nature of two-exciton states of light-harvesting complex: Doubly resonant three-wave-mixing spectroscopy.

Photosynthetic light-harvesting complex is a coupled multichromophore system. Due to electronic couplings between neighboring chlorophylls in the complex, the one- and two-exciton states are delocalized and they can be written as linear combinations of singly and doubly excited configurations, respectively. Despite that the chiroptical properties of one-exciton states in such a multichromophore system have been investigated by using linear optical activity measurement techniques; those of two-exciton states have not been studied before due to a lack of appropriate measurement methods. Here, we present a theoretical description on chiroptical chi((2)) spectroscopy and show that it can be used to investigate such properties of a photosynthetic light-harvesting system, which is the Fenna-Matthews-Olson complex, consisting of seven bacteriochlorophylls in its protein subunit. To simulate the doubly resonant sum- and difference-frequency-generation spectra of the complex, one- and two-exciton transition dipoles were calculated. Carrying out quantum chemistry calculations of electronically excited states of a model bacteriochlorophyll system and taking into account the dipole-induced dipole electronic transition processes between the ground state and two-exciton states, we could calculate the two-dimensional sum-frequency-generation spectra revealing dominant second-order chiroptical transition pathways and involved one- and two-exciton states. It is believed that the present computational scheme and the theoretically proposed doubly resonant two-dimensional three-wave-mixing spectroscopy would be of use to shed light on the chiroptical natures of two-exciton states of arbitrary coupled multichromophore systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app