JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress.

Strategies such as foliar application of antitranspirants have the potential to regulate transpiration, but often, the limitation of CO(2) exchange as a result of reduced stomatal conductance can impair this beneficial effect. Elevated ambient [CO(2)] could significantly improve CO(2) diffusion while effectively reducing transpiration. In this experiment, we examined the response of sweet pepper (Capsicum annuum L.) to the foliar application of antitranspirant (AT) under two [CO(2)] (380 and 2000 micromol mol(-1)) and two drought intensities (4 or 8d without irrigation). The results showed that stomatal conductance and transpiration were reduced, while AT impaired photosynthesis at standard, but not at elevated [CO(2)] of fully irrigated plants. This effect was already apparent after 4d of drought. Drought had a minor impact on chlorophyll fluorescence (F(v)/F(m)). Additionally, root respiration was increased at elevated [CO(2)] but, after 8d of drought, it was higher for plants treated with AT than for non-sprayed plants. Leaf water potential was affected more by drought at ambient compared to elevated [CO(2)], and, especially after 8d of drought, AT minimized the reductions in leaf water potential. Leaf concentrations of proline and starch were affected by both [CO(2)] and AT, especially after 8d of drought. Moreover, increasing [CO(2)] promoted the accumulation of starch, but led to decreases in the tissue concentrations of the soluble organic osmolytes, and hence diminished osmotic adjustment after 8d of water withholding, relative to ambient [CO(2)]. This study indicates that, in addition to the reported beneficial effect of elevated [CO(2)] on drought stress, AT could significantly improve drought tolerance in sweet pepper plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app