JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance.

Oncogene 2010 August 20
Endocrine therapy is the main therapeutic option for patients with estrogen receptor (ERalpha)-positive breast cancer. Resistance to this treatment is often associated with estrogen-independent activation of ERalpha. In this study, we show that in ERalpha-positive breast cancer cells, activation of the receptor tyrosine kinase RET (REarranged during Transfection) by its ligand GDNF results in increased ERalpha phosphorylation on Ser118 and Ser167 and estrogen-independent activation of ERalpha transcriptional activity. Further, we identify mTOR as a key component in this downstream signaling pathway. In tamoxifen response experiments, RET downregulation resulted in 6.2-fold increase in sensitivity of MCF7 cells to antiproliferative effects of tamoxifen, whereas GDNF stimulation had a protective effect against the drug. In tamoxifen-resistant (TAM(R)-1) MCF7 cells, targeting RET restored tamoxifen sensitivity. Finally, examination of two independent tissue microarrays of primary human breast cancers revealed that expression of RET protein was significantly associated with ERalpha-positive tumors and that in primary tumors from patients who subsequently developed invasive recurrence after adjuvant tamoxifen treatment, there was a twofold increase in the number of RET-positive tumors. Together these findings identify RET as a potentially important therapeutic target in ERalpha-positive breast cancers and in particular in tamoxifen-resistant tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app