Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chondrocyte rather than osteoblast conversion of vascular cells underlies medial calcification in uremic rats.

OBJECTIVE: To investigate cell biological changes in calcified aortas of rats that experienced chronic renal failure.

METHODS AND RESULTS: Vascular smooth muscle cells have the potential to transdifferentiate to either chondrocytes or osteoblasts, depending on the molecular pathways that are stimulated. Uremia-related medial calcification was induced by feeding rats an adenine low-protein diet for 4 weeks. Aortic calcification was evaluated biochemically and histochemically and with in vivo micro-computed tomographic scanning. Immunohistochemistry and RT-PCR were applied to analyze the time-dependent aortic expression of molecules involved in the segregation between the chondrocyte versus osteoblast differentiation pathway. After 4 weeks, 85% of the uremic rats had developed distinct aortic medial calcification, which increased to severely calcified lesions during further follow-up. The calcification process was accompanied by a significant time-dependent increase in the expression of the chondrocyte-specific markers sex determining region Y-box 9 (sox9), collagen II, and aggrecan and a nonsignificant trend toward enhanced core binding factor alpha 1 (cbfa1), and collagen I. The expression of the osteoblast marker osterix and both lipoprotein receptor-related protein 6 and beta-catenin, molecules of the wingless-type MMTV integration site family member (Wnt)/beta-catenin pathway induced during osteoblast differentiation, was suppressed.

CONCLUSIONS: In the aorta of uremic rats, medial smooth muscle cells acquire a chondrocyte rather than osteoblast phenotype during the calcification process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app