Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nonadiabatic excited-state dynamics with hybrid ab initio quantum-mechanical/molecular-mechanical methods: solvation of the pentadieniminium cation in apolar media.

A new implementation of nonadiabatic excited-state dynamics using hybrid methods is presented. The current approach is aimed at the simulation of photoexcited molecules in solution. The chromophore is treated at the ab initio level, and its interaction with the solvent is approximated by point charges within the electrostatic embedding approach and by a Lennard-Jones potential for the nonbonded interactions. Multireference configuration interaction (MRCI) and multiconfiguration self-consistent field (MCSCF) methods can be used. The program implementation has been performed on the basis of the Columbus and Newton-X program systems. For example, the dynamics of penta-2,4-dien-1-iminium (PSB3) and 4-methyl-penta-2,4-dien-1-iminium cations (MePSB3) was investigated in gas phase and in n-hexane solution. The excited-state (S(1)) lifetime and temporal evolution of geometrical parameters were computed. In the case of PSB3 the n-hexane results resemble closely the gas phase data. MePSB3, however, shows a distinct extension of lifetime due to steric hindering of the torsion around the central bond because of solute-solvent interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app