OPEN IN READ APP
JOURNAL ARTICLE

Experimental cardiac tamponade: a hemodynamic and Doppler echocardiographic reexamination of the relation of right and left heart ejection dynamics to the phase of respiration

M S Gonzalez, M A Basnight, C P Appleton
Journal of the American College of Cardiology 1991, 18 (1): 243-52
2050928
A hallmark of cardiac tamponade is pulsus paradoxus. However, the exact mechanism of pulsus paradoxus and the relation of left and right ventricular ejection dynamics remain controversial, with some studies suggesting an inverse relation in ventricular filling and ejection and others citing a more important role for the effects of right heart ejection dynamics delayed by transit through the pulmonary artery bed. To specifically reexamine this issue, six sedated but spontaneously breathing dogs were studied during experimental cardiac tamponade with use of extensive hemodynamic instrumentation and Doppler methods. During cardiac tamponade, left ventricular systolic pressure decreased from 125.8 +/- 12.1 to 81.7 +/- 26.7 mm Hg (p less than 0.01) and cardiac output from 5.86 +/- 1.48 to 2.34 +/- 0.98 liters/min (p less than 0.001); mean pericardial pressure increased from -1.2 +/- 0.8 to 10.5 +/- 3 mm Hg (p less than 0.001) and pulsus paradoxus from 4.3 +/- 1.6 to 10.7 +/- 1.2 mm Hg (p less than 0.001) compared with baseline values. An inverse relation in left and right ventricular ejection dynamics that was very close to 180 degrees out of phase was seen throughout the respiratory cycle in multiple hemodynamic and Doppler variables including peak systolic pressures, aortic and pulmonary flow velocities and ventricular ejection times. Simultaneous recording of the transmitral pressure gradient provided indirect evidence that the ventricular ejection dynamics were directly related to changes in ventricular filling. However, the magnitude of ventricular pressure or output flow velocity for each respiratory cycle was variable, depending on the exact timing of filling and ejection in relation to the phase of respiration. Variation in left ventricular output due to changes in right ventricular output delayed by transit through the pulmonary vasculature was not recognized in any animal. It is concluded that in spontaneously breathing dogs with acute cardiac tamponade, peak ventricular pressures, ventricular ejection times and pulmonary and aortic flow velocities have an inverse relation that is very close to 180 degrees out of phase.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Trending on Read

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
2050928
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"