JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

SGLT2 inhibition--a novel strategy for diabetes treatment.

Inhibiting sodium-glucose co-transporters (SGLTs), which have a key role in the reabsorption of glucose in the kidney, has been proposed as a novel therapeutic strategy for diabetes. Genetic mutations in the kidney-specific SGLT2 isoform that result in benign renal glycosuria, as well as preclinical and clinical studies with SGLT2 inhibitors in type 2 diabetes, support the potential of this approach. These investigations indicate that elevating renal glucose excretion by suppressing SGLT2 can reduce plasma glucose levels, as well as decrease weight. Although data from ongoing Phase III trials of these agents are needed to more fully assess safety, results suggest that the beneficial effects of SGLT2 inhibition might be achieved without exerting significant side effects--an advantage over many current diabetes medications. This article discusses the role of SGLT2 in glucose homeostasis and the evidence available so far on the therapeutic potential of blocking these transporters in the treatment of diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app