Inspiratory muscle training enhances pulmonary O(2) uptake kinetics and high-intensity exercise tolerance in humans

Stephen J Bailey, Lee M Romer, James Kelly, Daryl P Wilkerson, Fred J DiMenna, Andrew M Jones
Journal of Applied Physiology 2010, 109 (2): 457-68
Fatigue of the respiratory muscles during intense exercise might compromise leg blood flow, thereby constraining oxygen uptake (Vo(2)) and limiting exercise tolerance. We tested the hypothesis that inspiratory muscle training (IMT) would reduce inspiratory muscle fatigue, speed Vo(2) kinetics and enhance exercise tolerance. Sixteen recreationally active subjects (mean + or - SD, age 22 + or - 4 yr) were randomly assigned to receive 4 wk of either pressure threshold IMT [30 breaths twice daily at approximately 50% of maximum inspiratory pressure (MIP)] or sham treatment (60 breaths once daily at approximately 15% of MIP). The subjects completed moderate-, severe- and maximal-intensity "step" exercise transitions on a cycle ergometer before (Pre) and after (Post) the 4-wk intervention period for determination of Vo(2) kinetics and exercise tolerance. There were no significant changes in the physiological variables of interest after Sham. After IMT, baseline MIP was significantly increased (Pre vs. Post: 155 + or - 22 vs. 181 + or - 21 cmH(2)O; P < 0.001), and the degree of inspiratory muscle fatigue was reduced after severe- and maximal-intensity exercise. During severe exercise, the Vo(2) slow component was reduced (Pre vs. Post: 0.60 + or - 0.20 vs. 0.53 + or - 0.24 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 765 + or - 249 vs. 1,061 + or - 304 s; P < 0.01). Similarly, during maximal exercise, the Vo(2) slow component was reduced (Pre vs. Post: 0.28 + or - 0.14 vs. 0.18 + or - 0.07 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 177 + or - 24 vs. 208 + or - 37 s; P < 0.01). Four weeks of IMT, which reduced inspiratory muscle fatigue, resulted in a reduced Vo(2) slow-component amplitude and an improved exercise tolerance during severe- and maximal-intensity exercise. The results indicate that the enhanced exercise tolerance observed after IMT might be related, at least in part, to improved Vo(2) dynamics, presumably as a consequence of increased blood flow to the exercising limbs.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"