Add like
Add dislike
Add to saved papers

Exciplex-like emission from a closely-spaced, orthogonally-sited anthracenyl-boron dipyrromethene (Bodipy) molecular dyad.

A molecular dyad, , has been prepared that incorporates a boron dipyrromethene (Bodipy) group functionalized at the meso position with an anthracenyl unit. Emission from the dyad contains contributions from both localized fluorescence from the Bodipy unit and exciplex-like emission associated with an intramolecular charge-transfer state. The peak position, intensity and lifetime of this exciplex emission are solvent dependent and the shift in the emission maximum shows a linear relationship to the solvent polarity function (Deltaf). The calculated dipole moment for the exciplex is 22.5 +/- 2.2 D. The radiative rate constant (k(RAD)) for exciplex emission decreases progressively with increasing solvent polarity. In this latter case, k(RAD) shows an obvious dependence on the energy gap between the exciplex state and the first-excited singlet state resident on the Bodipy unit. The emission characteristics for dissolved in perfluorooctane are used to characterize the refractive index and dielectric constant of the solvent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app