Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of cell geometry on conduction velocity in a subcellular model of myocardium.

We have studied the effect of cell geometry on propagation velocity of the cardiac impulse using a subcellular computer model of myocardium. Variation of cell size has only small effects on longitudinal and transverse conduction velocities, when the ratio of cell length/width is constant, for cell sizes (length x width) between (60 microm x 20 microm) and (120 microm x 40 microm). The results were not dependent on gap-junction conductance (range 0.25-1 microS), gap-junction distribution, or the specific tissue architecture. Longitudinal conduction velocity increased with the cell length/width ratio and transverse velocity decreased. The cell length/width ratio was a good estimator of the anisotropic ratio. In conclusion, cell length/width ratio is more important than cell size in determining conduction velocity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app