JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microstructure and mechanical properties of Nb15Al10Ti alloy produced by mechanical alloying and high temperature processing.

In this work, an Nb15Al10Ti alloy produced by mechanical alloying was investigated. The milling of elemental powders of Nb, Al as well as TiAl intermetallic phase resulted in the formation of homogenous niobium solid solution, Nb(ss), and refinement of powder particles. Powder after milling was consolidated by conventional hot pressing at 1300 degrees C under pressure of 25 MPa as well as by hot isostatic pressing at 1200 degrees C under pressure of 1 GPa. Microstructure of consolidated material was examined by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. Materials after consolidation were composed of three phases: niobium solid solution Nb(ss), Nb(3)Al intermetallic phase and titanium oxide dispersoid TiO. The analysis of the mechanical properties indicated that both refinement of microstructure as well as introduction of ductile Nb(ss) into the microstructure contributed to very high yield strength and fracture toughness satisfactory for this strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app