JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Connective Tissue Growth Factor (CTGF/CCN2) enhances lactogenic differentiation of mammary epithelial cells via integrin-mediated cell adhesion.

BACKGROUND: Connective Tissue Growth Factor (CTGF/CCN2), a known matrix-associated protein, is required for the lactogenic differentiation of mouse mammary epithelial cells. An HC11 mammary epithelial cell line expressing CTGF/CCN2 was constructed to dissect the cellular responses to CTGF/CCN2 that contribute to this differentiation program.

RESULTS: Tetracycline-regulated expression of CTGF/CCN2 in HC11 cells enhanced multiple markers of lactogenic differentiation including beta-casein transcription and mammosphere formation. In a separate measure of mammary differentiation the addition of CTGF/CCN2 to cultures of MCF10A cells increased the development of acini in vitro. In HC11 cells the elevated levels of CTGF/CCN2 diminished the requirement for extracellular matrix proteins in the activation of beta-casein transcription, indicating that CTGF/CCN2 contributed to lactogenic differentiation through the regulation of matrix dependent cell adhesion. CTGF/CCN2 expression in HC11 cells increased expression of extracellular matrix proteins and integrins, enhanced the formation of focal adhesion complexes, and increased survival signaling. In addition, HC11 cells adhered to immobilized CTGF/CCN2 and this was inhibited by function-blocking antibodies to the integrins alpha6 and beta1, and to a lesser degree by antibody to beta3 integrin.

CONCLUSIONS: CTGF/CCN2 expression in HC11 cells led to an increase in multiple markers of lactogenic differentiation. The mechanisms by which CTGF/CCN2 contributed to lactogenic differentiation include direct binding of CTGF/CCN2 to integrin complexes and CTGF/CCN2-induced matrix protein expression resulting in elevated integrin functionality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app